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Abstract: Urban health outcomes are shaped by the complex interplay of environmental, social, and spatial factors. 
This study develops a Healthy Location Index (HLI) to assess spatial health risks by integrating health-promoting 
(HPSVs) and health-restraining (HRSVs) spatial variables using geospatial analysis and the Analytic Hierarchy Process 
(AHP). Taking Kolkata, India, as a case study, the HLI incorporates factors such as green and blue spaces, built-up 
density, air quality, and the distribution of alcohol and fast-food outlets to create a spatial model of urban health. The 
study utilizes remotely sensed and administrative datasets (e.g., Landsat-derived NDVI, NDBI, NDWI, Point-of-Interest 
data) and validates the HLI against COVID-19 containment zones (June 2020–January 2021) using Receiver Operating 
Characteristic (ROC) analysis. Results indicate that areas with high HLI scores—characterized by greater access to 
green spaces and lower exposure to environmental stressors—were less likely to be containment zones, suggesting a 
meaningful relationship between spatial health factors and urban resilience. However, the study acknowledges po-
tential confounding variables, such as socioeconomic disparities, population density, and healthcare accessibility, 
which may influence health outcomes. The findings underscore the global applicability of the HLI framework in urban 
planning, public health policy, and epidemiological risk assessment, offering a scalable model for cities facing rapid 
urbanization and environmental challenges. 
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Highlights: 

• Proposed a scalable HLI framework with global implications for urban planning and targeted health interven-
tions. 

• Validation using COVID-19 containment zones and ROC analysis, demonstrating the utility of HLI in predicting 
health-risk areas. 

• Policy implications for global urban planning and health interventions, emphasizing the need for improved green 
space access and environmental risk mitigation. 

 

1. Introduction 

Urban environments play a critical role in shaping public health, with the spatial distribution of health-promoting and health-restraining 
factors significantly influencing well-being. While the interplay between urban design and health has been widely acknowledged (Pineo, Glonti, & 
Davies, 2018), there remains a pressing need for tools that can systematically assess these factors and their interactions. The concept of a "healthy 
city," as defined by the World Health Organization (WHO), emphasizes continuous improvement in health outcomes through better social and 
physical environments, expanded community resources, and collaborative efforts among citizens (World Health Organization, 1985). However, 
achieving this vision requires a deeper understanding of how spatial variables—both positive and negative—interact to shape urban health (Marek 
et. al., 2021b). 

In geography, the concept of "sense of place" significantly affects public health. The environment of a location impacts individuals across 
various dimensions, including spiritual, psychological, social, physical, and aesthetic aspects (Frumkin, 2003). Places can be categorized into two 
types: "good places," which promote better public health, and "bad places," which act as constraints to public health.  Well-designed cities priori-
tize access to green spaces, safe transportation systems, and resilient infrastructure, which collectively reduce health risks and promote physical 
and mental well-being (Banay et al., 2017; Nieuwenhuijsen, 2018). With 70% of the global population projected to live in urban areas by 2050, the 
urgency to create healthy cities has never been greater. Moreover, healthy cities align with several Sustainable Development Goals (SDGs), includ-
ing Zero Hunger, Clean Water and Sanitation, Sustainable Cities and Communities, and Climate Action (Pineo, Glonti, & Davies, 2018). As Aristotle 
stated, "A good city exists for the sake of a good life—not for the sake of life only" (Myerson, 2023). Urban planning and management are pivotal 
in this regard. There is growing concern among city officials and decision-makers regarding the impact of the urban environment on the health of 
its inhabitants. Practitioners in sectors such as housing, planning, and transportation are seeking new tools and guidance to better understand 
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how existing policies can support the development of healthy cities (Zhou, Lengerke & Dreier, 2021a 2021b).  In developed regions of Europe, the 
concept of "Healthy Cities" was established with a focus on both urban and local dimensions for promoting health. Healthy Cities initiatives in 
Europe have progressed through three five-year phases: 1988–1992, 1993–1997, and 1998–2002. The four primary strategies of Healthy Cities in 
Europe are: (i) prioritizing health on societal and political agendas, (ii) fostering partnerships for development within the health sector through 
good governance, (iii) advancing health priorities at both the European and global levels, and (iv) emphasizing the principles and determinants of 
health as essential components for sustainable development (Pineo, Glonti, & Davies, 2018).   

In various regions of the Americas, the concept of Healthy Municipalities and Communities (HMC) is actively promoted. Countries that have 
adopted this initiative recognize that environmental quality and basic sanitation are fundamental to the development of any healthy city. HMC 
offers policies that not only support the health of local populations but also promote broader development goals, contributing to greater equity 
in public health (Pineo, Glonti, & Davies, 2018).  

In the vast region of Southeast Asia, the inter-regional Healthy Cities Programme was launched in 1994, initially comprising six cities. How-
ever, the development of healthy cities in this region has been hindered by a lack of transparency surrounding the concept among local authorities 
and insufficient integration of urban infrastructure to support the initiative. Despite these early challenges, the programme has gradually ex-
panded, and there are currently around 40 healthy cities in the region. In 2002, the Regional Office commissioned an evaluation of healthy cities 
projects in 12 cities across India, Nepal, Sri Lanka, and Thailand (Pineo, Glonti, & Davies, 2018). 

Despite growing awareness, city officials and planners often lack the tools to evaluate the spatial dynamics of urban health. Existing frame-
works, such as the Healthy Location Index (HLI) in New Zealand, have shown promise in mapping health-promoting and health-restraining factors 
but remain limited in their applicability to diverse urban contexts, particularly in low- and middle-income countries (LMICs) (Marek et al., 2021a 
and 2021b). This gap highlights the need for adaptable, spatially informed tools that can assess urban health comprehensively and guide evidence-
based interventions. 

2. Literature Review 

The relationship between urban environments and public health has been a focal point of research, with increasing emphasis on the spatial 
dimensions of health-promoting and health-restraining factors. While earlier studies have explored the broad connections between urban plan-
ning and health, recent research has shifted toward understanding the spatial interplay of these factors and their cumulative impact on health 
outcomes (Marek et al., 2021a; Zhou, Lengerke, & Dreier, 2021). Urban environments are complex systems where health-promoting spatial vari-
ables (HPSVs) and health-restraining spatial variables (HRSVs) coexist and interact. HPSVs, such as green spaces, walkable neighborhoods, and 
access to healthcare, have been shown to improve mental health, reduce obesity, and enhance overall well-being (Banay et al., 2017; Twohig-
Bennett & Jones, 2018). Conversely, HRSVs, including air pollution, inadequate sanitation, and poor housing conditions, exacerbate chronic dis-
eases and mental health issues (Nieuwenhuijsen, 2018).  

Recently, a study noted that children's BMI z-scores were correlated with green space availability, measured using the Normalized Difference 
Vegetation Index (NDVI). The study found that lower green space availability was associated with lower BMI, with the strongest correlations ob-
served among boys and migrant children compared to girls and non-migrant children. This pattern was particularly evident in areas where green 
space availability was highest (Perdue Stone, & Gostin, 2003). Public health is also heavily influenced by the built environment, a relationship that 
was starkly evident during the Industrial Revolution when infectious diseases posed the most significant public health threat. Overcrowded, poor 
living conditions in urban areas contributed to the rapid spread of infections. In today's era, dominated by chronic diseases, there remains a 
significant connection between population health and the built environment (De and Rai 2024). Physical surroundings can expose individuals to 
pollutants and toxins, while also influencing lifestyle choices that contribute to conditions such as diabetes, coronary artery disease, and asthma. 
Public health advocates can drive improvements in the design of cities and suburbs to enhance public health outcomes, but it is crucial that they 
first understand the legal and regulatory frameworks that shape urban planning (Perdue Stone, & Gostin, 2003). Globally, initiatives such as the 
WHO’s Healthy Cities Programme and the Healthy Municipalities and Communities (HMC) in the Americas have emphasized the importance of 
integrating health into urban planning (Pineo, Glonti, & Davies, 2018). These initiatives have promoted policies that address environmental quality, 
basic sanitation, and equitable access to resources. 

Despite this understanding, there is limited research on how these variables interact spatially to influence health outcomes at the neighbor-
hood or city level (Marek et al., 2021b). Recent studies have highlighted the importance of spatial analysis in urban health research. The use of 
Geographic Information Systems (GIS) and spatial statistics has enabled researchers to map health disparities and identify hotspots of health risks 
(Beyer et al., 2014; Chen et al., 2020). However, these studies often focus on isolated factors rather than integrating multiple HPSVs and HRSVs 
into a comprehensive framework. In New Zealand, an attempt is made to as a pioneering tool for mapping the influence of environmental factors 
on health. The HLI identifies healthy and unhealthy components within urban environments, providing actionable insights for urban planners and 
policymakers (Marek et al., 2021a). While the HLI has shown promise, its application has been limited to specific regions, and there is a need for 
adaptable frameworks that can be applied to diverse urban contexts, particularly in rapidly urbanizing regions of the Global South. Existing tools 
are often context-specific and lack scalability to other regions, particularly in low- and middle-income countries (LMICs) where urban health chal-
lenges are most acute (Marek et al., 2021b). There is also limited research on the role of spatial interconnections in shaping health outcomes, 
particularly in densely populated cities with complex urban morphologies. 

This study addresses critical gaps in urban health assessment by developing a novel Spatially-Informed Healthy Location Index (HLI).  The HLI 
evaluates the complex interplay of health-promoting spatial variables (HPSVs) and health-restraining spatial variables (HRSVs) within urban envi-
ronments.  Using Kolkata as a case study, the research constructs an HLI that integrates diverse spatial factors, including green spaces, blue spaces, 
air quality, and the presence of unhealthy food and beverage outlets.  The conceptual model not only identifies these contributing factors but also 
analyzes their spatial interrelationships, providing a holistic framework for urban health assessment. This work contributes to the expanding field 
of spatially informed urban health tools and offers a scalable model applicable to other cities, especially those in rapidly urbanizing regions of Asia, 
Africa, and Latin America.  The HLI provides a practical framework for addressing urban health disparities and informing evidence-based interven-
tions.  By bridging the gap between local context and global applicability, this research advances geographical knowledge and offers actionable 
solutions for creating healthier urban environments worldwide. 
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3. Materials and Methods 

This study focuses on the spatial determinants of urban health, recognizing that the natural spaces, built environment and surrounding 
ambience play a significant role in shaping health outcomes. By developing a Spatially-Informed Healthy Location Index (HLI), this research aims 
to provide a comprehensive assessment of the spatial distribution of health-promoting and health-restraining factors within the urban environ-
ment. This index will integrate various spatial parameters, allowing for the identification of areas with both assets and challenges related to health, 
ultimately informing targeted interventions and urban planning strategies (Faka et. al., 2024). With this context in mind, the study pursues the 
following specific objectives: 

• To develop a Spatially-Informed Healthy Location Index (HLI) for the selected study area. 
• To identify and quantify the spatial distribution of health-promoting and health-restraining factors within the urban environment. 
• To analyze the complex interplay between these factors and their influence on overall urban health. 

This study selects specific parameters to construct the Healthy Location Index (HLI), categorizing them into Health-Promoting Spatial Varia-
bles (HPSVs) and Health-Restraining Spatial Variables (HRSVs).  The chosen HPSVs include: (i) green spaces, recognized for their positive impacts 
on air quality, recreation, and mental well-being (Maulken et. al. 2023) (ii) blue spaces, encompassing ponds, lakes, and other water bodies, valued 
for their recreational opportunities and support of aquatic ecosystems. Access to blue spaces has been associated with improved mental and 
physical health, including stress reduction and increased physical activity (Gascon et.al. 2017); and (iii) recreational parks or open spaces, promot-
ing physical activity and social interaction. Regular physical activity is crucial for preventing chronic diseases and improving overall health.  The 
selected HRSVs, representing factors that negatively impact health, comprise: (i) the Normalized Difference Built-up Index (NDBI), often used as a 
proxy for urbanization and its associated environmental changes. High NDBI values indicate a greater concentration of built-up surfaces, which 
can lead to increased surface temperatures, reduced green space, and altered environmental processes (Maulken et. al. 2023). These changes can 
negatively impact human health and well-being; (ii) fast food and alcohol outlets have been linked to various social detriments, including increased 
crime rates, alcohol-related health problems, and community disruption (Fraser et al., 2010). Their inclusion as an HRSV acknowledges their po-
tential negative impact on community health and safety.; (iii) the Air Quality Index (AQI), reflecting the level of air pollution and its associated 
health risks (Perdue, Stone, & Gostin, 2003). Air pollution is a significant threat to public health, contributing to respiratory illnesses, cardiovascular 
disease, and other adverse health outcomes. The AQI provides a standardized measure of air pollution levels and is a crucial indicator of environ-
mental health.; and (iv) waterlogged areas, which can pose health risks due to the potential for disease transmission, particularly vector-borne 
diseases like malaria and dengue fever (Maulken et. al. 2023). These areas can also create unsanitary conditions and contribute to other environ-
mental health hazards.  The selection of these specific HPSVs and HRSVs aims to provide a comprehensive and balanced assessment of the spatial 
determinants of health within the study area.  This approach recognizes that urban health is influenced by a complex interplay of both positive 
and negative environmental factors.  

 

 

Figure 1. Research framework for developing a Spatially-Informed Healthy Location Index (HLI). Abbreviations used: HLI – Healthy Location Index, 
HPSVs – Health-Promoting Spatial Variables (NDVI: Normalized Difference Vegetation Index, NDWI: Normalized Difference Water Index, LULC: 
Land Use and Land Cover), HRSVs – Health-Restraining Spatial Variables (NDBI: Normalized Difference Built-up Index, WL: Waste Land, AQI: Air 
Quality Index, FF & AO: Fast Food and Alcohol Outlets. 
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This study prioritizes spatial parameters over socio-economic factors due to their more direct and measurable influence on health outcomes. 
While socio-economic factors such as income, education, and employment are undeniably important, their impact on health is often mediated 
through complex and indirect pathways (Diez Roux & Mair, 2010; Arcaya et al., 2016). In contrast, spatial parameters—such as access to green 
spaces, proximity to unhealthy food outlets, and exposure to air pollution—exert a more immediate and tangible influence on individual and 
community health (Banay et al., 2017; Twohig-Bennett & Jones, 2018). Perhaps, spatial parameters are inherently measurable and spatially explicit, 
making them amenable to Geographic Information Systems (GIS) and spatial analysis techniques, which enable precise mapping and targeted 
interventions (Chen et al., 2020; Marek et al., 2021a). Socio-economic data, on the other hand, are often challenging to collect at fine-grained 
spatial scales, limiting their utility for localized health interventions (Zhou, Lengerke, & Dreier, 2021b). 

The built environment plays a critical role in shaping health outcomes, and spatial parameters directly reflect these environmental charac-
teristics (Nieuwenhuijsen, 2018). For example, the availability of green spaces has been linked to reduced stress, improved mental health, and 
lower rates of obesity (Twohig-Bennett & Jones, 2018), while proximity to fast-food outlets is associated with higher rates of diet-related diseases 
(Cobb et al., 2015). Interventions targeting spatial parameters, such as increasing green space or regulating unhealthy food environments, are 
often more directly actionable through urban planning and policy compared to broader socio-economic reforms, which require systemic changes 
and longer timeframes (Pineo, Glonti, & Davies, 2018). 

While this study acknowledges the importance of socio-economic factors, it adopts a complementary approach by focusing on the spatial 
dimension of health. This approach recognizes the complex interplay between spatial and socio-economic influences but emphasizes the action-
able nature of spatial interventions. By providing insights into the spatial distribution of health-promoting and health-restraining factors, this study 
aims to inform targeted interventions and contribute to the creation of healthier urban environments. Figure 1 illustrates the research framework 
adopted for this study. 

3.1 A Case Study on Kolkata Municipal Corporation Area  

Kolkata Metropolitan City (KMC) mapped in Figure 2, presents a critical case for the development of a Healthy Location Index (HLI) using 
geospatial tools due to its complex urban environment, poor air quality, and significant public health challenges. Recent studies have emphasized 
that Kolkata faces persistent environmental and living condition issues that adversely affect the quality of life in the city. According to a report by 
the Centre for Science and Environment (Centre for Science and Environment - CSE, 2020). Kolkata consistently ranks among the most polluted 
cities in India, with levels of particulate matter (PM10 and PM2.5) regularly exceeding permissible limits. This pollution is largely driven by vehicular 
emissions, industrial activities, and the combustion of solid fuels in densely populated areas, creating a hazardous urban environment for residents. 
Urban air quality studies (Kar et. al., 2024) show that Kolkata has a high burden of respiratory diseases, with air pollutants like nitrogen dioxide 
(NO₂) and particulate matter contributing to the rise of chronic obstructive pulmonary disease (COPD), asthma, and other respiratory ailments. A 
survey conducted in the city revealed that nearly 70% of respondents suffered from air pollution-induced illnesses, and lung cancer cases were 
reported to be among the highest in Indian cities (Central Pollution Control Board, 2018).  

 

 

Figure 2. Map of the Study Area (a) India—1. Andaman and Nicobar; 2. Andhra Pradesh; 3. Arunachal Pradesh; 4. Assam; 5. Bihar; 6. Chandigarh; 
7. Chhattisgarh. 8.Dadra and Nagar Haveli; 9.Daman and Diu; 10. Goa; 11. Gujarat; 12. Haryana; 13. Himachal Pradesh; 14. Jammu and Kashmir; 
15. Jharkhand;16. Karnataka; 17. Kerala; 18.Lakshadweep; 19. Madhya Pradesh; 20. Maharashtra; 21.Manipur; 22. Meghalaya; 23.Mizoram; 24. 
Nagaland; 25.NCT of Delhi; 26. Odisha; 27. Puducherry; 28. Punjab; 29. Rajasthan; 30. Sikkim; 31.Tamil Nadu; 32. Telangana; 33.Tripura; 34. Uttar 
Pradesh; 35.Uttarakhand; 36. West Bengal. 
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In terms of living conditions, the city is marked by overcrowding, inadequate housing, and limited access to green and blue spaces, which 
are essential for mental and physical well-being. According to the Global Liveability Index 2022, Kolkata scored low on quality-of-life indicators 
such as healthcare access, infrastructure, and environmental sustainability (Economist Intelligence Unit, 2022). Studies show that while Kolkata 
has some health-promoting areas, such as green parks and water bodies, these are unevenly distributed and inaccessible to a large portion of the 
population. The lack of adequate urban planning, particularly in the allocation of green spaces, exacerbates the health risks posed by pollution 
and limited recreational spaces. Given this context, Kolkata is an ideal location for conducting an HLI using geospatial tools, as it provides a unique 
opportunity to map both health-promoting and health-restraining spatial variables (Sen & Guchhait, 2021). Tools like NDVI, NDWI, and NDBI can 
highlight the disparities in access to healthy environments across the city, such as proximity to parks, water bodies, and air quality hotspots. Recent 
studies (Ghosh & Banerjee, 2020; Mukherjee et al., 2019) have highlighted the need for urban planning interventions that prioritize the creation 
of "healthy locations" by promoting access to green spaces, reducing pollution, and improving overall living conditions.  By integrating spatial 
health data, the HLI will not only pinpoint areas of high risk but also inform policy interventions aimed at improving public health, promoting 
sustainable urban living, and mitigating environmental hazards. Thus, Kolkata's combination of severe air pollution, poor urban infrastructure, and 
limited access to healthy spaces makes it a prime candidate for developing and applying the HLI framework to enhance the quality of life for its 
residents. 

3.2 Data Acquisition, Database Creation and Distribution Mapping 

The geospatial analysis for computing the Healthy Location Index (HLI) utilized a diverse range of data sources. Satellite imagery from Landsat 
8, dated December 2021 to December 2023, was employed to extract key indices such as average NDVI (Normalized Difference Vegetation Index), 
NDWI (Normalized Difference Water Index), and NDBI (Normalized Difference Built-up Index). Land Use and Land Cover (LULC) data were obtained 
from Bhuvan, an Indian geo-platform providing detailed environmental and infrastructural data. Locations of alcohol and food outlets, as well as 
AQI stations, were sourced from Google Earth. The analysis involved Euclidean Distance calculations and reclassification of spatial variables, fol-
lowed by an AHP (Analytic Hierarchy Process) pairwise comparison to derive weights and assess the health impact of various locations. Alcohol 
outlet data was further cross verified from the West Bengal Excise Department, including the addresses of registered alcohol outlets along with 
their zip codes. Using ArcGIS 10.8, image classification was performed to calculate the Normalized Difference Vegetation Index (NDVI), Normalized 
Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI).  

In the weighted overlay analysis, a standardized 1–10 scale was employed, where 1 denotes the least healthy locations and 10 signifies the 
most-healthy. This uniform scaling facilitates the integration of various spatial variables influencing urban health. Following a “Greater is Better” 
principle, NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) were reclassified such that higher values 
(greater vegetation and water presence) corresponded to healthier locations (score closer to 10), while lower values were associated with less 
favorable conditions (score closer to 1). Several studies have established that higher NDVI and NDWI values correlate with improved air quality, 
reduced urban heat island effects, and enhanced mental well-being. Recent studies have demonstrated that increased vegetation and water 
presence correlate with improved mental and physical health outcomes (Gascon et al., 2016; Gascon et al., 2017).  

Conversely, spatial variables following a “Lower is Better” approach were reclassified such that areas closer to health-supportive environ-
ments received higher scores. Euclidean distance calculations were performed for open spaces, recreational parks, and blue spaces (ponds/lakes), 
and reclassified using the same 1–10 scale. Locations nearer to these amenities (lower Euclidean distance) were assigned higher scores, as research 
has demonstrated that proximity to green and blue spaces significantly improves physical activity levels, mental health, and overall well-being (Van 
den Berg et al., 2015). 

Further Euclidean distance calculations were applied to health-restraining spatial variables (HRSVs), including wasteland, alcohol outlets, 
fast food outlets, and poor air quality index (AQI) locations (Figure 6). These were reclassified using the same 1–10 scale, where areas closer to 
these features were assigned lower scores, reflecting their negative influence on urban health. Proximity to wastelands has been linked to in-
creased exposure to environmental hazards, while alcohol and fast-food outlet density is associated with higher rates of non-communicable dis-
eases (Richardson et al., 2015; Thornton et al., 2016). Likewise, poor AQI values indicate increased exposure to respiratory and cardiovascular 
risks, further justifying their classification as health-restraining factors (Maulken et.al., 2023). 

Table 1. Reclassification of Health-Promoting and Health-Restraining Spatial Variables Based on the "Greater is Better" and "Lower is Better" 
Approach for Healthy Location Index (HLI) Assessment 

Category Spatial Variable Approach Adopted Reclassification Scoring Scale (1-10) 

HPSVs  NDVI (Normalized Difference Vegetation Index) Greater is Better Higher NDVI = Higher Score (10 = Most Healthy) 

NDWI (Normalized Difference Water Index) Greater is Better Higher NDWI = Higher Score (10 = Most Healthy) 

Distance to Open Spaces/Parks Lower is Better Closer Distance = Higher Score (10 = Most Healthy) 

Distance to Blue Spaces (Ponds/Lakes) Lower is Better Closer Distance = Higher Score (10 = Most Healthy) 

HRSVs  NDBI (Normalized Difference Built-up Index) Lower is Better Lower NDBI = Higher Score (10 = Most Healthy) 

Distance from Wastelands Greater is Better Higher Distance = Higher Score (10 = Most Healthy) 

Distance from Alcohol Outlets Greater is Better Higher Distance = Higher Score (10 = Most Healthy) 

Distance from Fast Food Outlets Greater is Better Higher Distance = Higher Score (10 = Most Healthy) 

Distance from Poor AQI Areas Greater is Better Higher Distance = Higher Score (10 = Most Healthy) 
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The threshold selection for each variable was informed by prior empirical research and policy guidelines emphasizing urban environmental 
health determinants. By integrating these “Greater is Better” and “Lower is Better” principles, the weighted overlay analysis effectively delineates 
spatial patterns of urban health in a scientifically robust manner. Table 1 provides a clear distinction between variables that promote health 
(HPSVs) and those that restrain it (HRSVs), along with their adopted reclassification approach and scoring scale. 

3.3 AHP Weighted Overlay Model for a Healthy Location Index 

The Analytical Hierarchy Process (AHP), a multi-criteria decision-making technique, plays a crucial role in aiding complex decision-making by 
deconstructing a challenging problem into a hierarchical structure (Rai, 2019). This structure descends from the main goal to criteria, sub-criteria, 
and potential solutions, arranged across successive tiers. The AHP method operates on the principle that decision-making is more effective when 
a small number of factors are considered in relation to a specific property, without the distraction of other unrelated factors or properties. These 
pairwise comparisons are based on Thomas Saaty’s "scale of relative importance," a nine-point comparative scale designed to measure intangible 
properties cited in many literatures (Rai, 2019). In this study, pairwise comparisons (Table 1) between NDVI, NDWI, Land Use and Land Cover, 
NDBI, alcohol outlets, food outlets, and the air quality index (AQI) were conducted using matrix representations (square and reciprocal) derived 
from the consensus of nine experts with backgrounds in urban planning, geography, public health, industry consulting, spatial analysis, and related 
research. The following parameters were used: n1 = Proximity to higher NDVI values; n2 = Proximity to higher NDWI values; n3 = Proximity to open 
spaces/recreational parks; n4 = Proximity to blue spaces/ponds/lakes; n5 = Distance from areas with higher NDBI values; n6 = Distance from 
waterlogged zones; n7 = Distance from fast food and alcohol outlets; n8 = Distance from poor AQI  

Table 2 results from multiple pairwise comparisons using Saaty’s nine-point scale of relative importance. This method, suitable for measuring 
intangible properties, employs a reciprocal matrix based on expert opinions. The matrix satisfies the reciprocal property (A= (aij), where aij=wi/wj), 
and relative weights are derived by normalizing the largest eigenvalue (λmax, where Aw=λmax). Consistency analysis ensures logical judgments 
(ajk=aik/aij), with a Consistency Ratio (CR) below 0.10 indicating acceptable consistency. If CR exceeds 0.10, reassessment is required (Rai 2019). 

Table 2. Pair Wise Comparison and Reciprocal Matrix1 

1 A reciprocal matrix is a key component of the Analytic Hierarchy Process (AHP) used in pairwise comparisons. It ensures that the relative importance of different 
criteria is logically consistent. A reciprocal matrix AAA is a square matrix where each element aij represents the ratio of the importance of criterion i over criterion j, 
and it satisfies the reciprocal property: 

A=(aij), where aij=wi/wj and aji=1/aij  
where: • Wi and wj are the relative weights of criteria i and j. • Aij indicates how much more important i is compared to j. • aji=1/aij ensures reciprocity, meaning 
if one criterion is twice as important as another (aij=2), then the reverse is half (aji=1/2). 

4. Results and Discussion 

  
n1 n2 n3 n4 n5 n6 n7 n8  

Spatial Variables Near 
Higher 
NDVI 
value 

Near 
Higher 
NDWI 
value 

Near Open 
Space/Rec
reational 
Park 

Near Blue 
space/pon
d/lake 

Away 
from 
Higher 
NDBI 

Away 
from Wa-
terlogged 
zone 

Away 
from fast 
Food and 
Alcohol 
Outlets 

Away 
from 
higher AQI 

n1 Near Higher NDVI 
value 

1 1 1 1 2 1/3 1/4 1/3 

n2 Near Higher NDWI 
value 

1 1 3 1 2 1/3 1/3 1/4 

n3 Near Open 
Space/Recreational 
Park 

1 1/3 1 1 2 1/3 1/3 1/4 

n4 Near Blue 
space/pond/lake 

1 1 1 1 3 3 1/3 1/3 

n5 Away from Higher 
NDBI 

1/2 2 1/2 1/3 1 1/4 1/3 1/4 

n6 Away from Water-
logged zone 

3 3 3 1/3 4 1 1/3 1/3 

n7 Away from fast 
Food and Alcohol 
Outlets 

4 3 1/3 3 3 3 1 1/2 

n8 Away from higher 
AQI 

3 4 4 3 4 3 2 1 
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4.1 Distribution mapping of HPSVs and HRSVs 

An analysis of Health Promoting and Health Restraining Spatial Variables (HPSVs and HRSVs) in Kolkata, providing valuable insights into the 
spatial distribution of health-related environmental factors within the city. Figure 3 illustrates key Health Promoting Spatial Variables (HPSVs), 
including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), open spaces, and blue spaces. NDVI 
and NDWI are widely used indicators for assessing the availability of vegetation and water bodies in urban areas. The NDVI in Kolkata predomi-
nantly ranges between -0.056 and 0.2573, indicating relatively low vegetation coverage across much of the city. Similarly, the NDWI values, which 
reflect the presence of water bodies, fall between -0.183 and 0.25, with higher values observed in areas such as the East Kolkata Wetlands and 
Anandapur, which are known for their water resources. Open spaces, including parks and recreational areas, are sparse, with notable concentra-
tions around the East Kolkata Wetlands, while blue spaces, representing water bodies such as lakes and ponds, are more evenly distributed.  As 
evident from Figure. 3, the Euclidean distance analysis illustrates the spatial distribution of ponds and lakes, ranging from 0 to 2,244.39 meters, 
and parks and open spaces, extending up to 11,239.9 meters. These HPSVs are crucial for urban health, as proximity to green and blue spaces has 
been strongly linked to improved physical and mental health outcomes in urban populations (Sarkar, Webster and Gallacher, 2018, Gascon et.al. 
2017).  

 

 

Figure 3. Health promoting spatial variables (HPSVs) and their distribution 

Figure 4 displays the Health Restraining Spatial Variables (HRSVs), which include the Normalized Difference Built-up Index (NDBI), wasteland 
areas, alcohol outlets, and the Air Quality Index (AQI). The NDBI highlights Kolkata's built-up areas, with darker shades representing denser urban-
ization. The highest NDBI values, ranging from -0.25264 to 0.183614, are concentrated in central and northern Kolkata, areas characterized by 
high-density development. Wasteland is relatively limited, though small patches are present in the southern parts of the city. Fast Food and Alcohol 
outlets are predominantly located in the central and northern regions. Figure 4 also presents the Euclidean distance analysis of key health-re-
straining spatial variables. The distance from waterlogged zones ranges from 0 to 10,167.2 meters, while the Euclidean distance from major fast 
food and alcohol outlets varies between 0 and 4,581.36 meters. Additionally, the interpolated air quality surface exhibits values between 56.77 
and 198.77, indicating moderate to severely poor air quality across Kolkata. AQI values across the city point to severe air quality issues, consistent 
with other studies that emphasize Kolkata’s poor air quality as a significant public health concern (World Health Organisation, 2020; Haque and 
Singh, 2017). Kolkata has been repeatedly ranked among the most polluted cities globally, with vehicular emissions and industrial activities as 
primary contributors (Haque and Singh, 2017). 
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4.2 Delineating health-influencing spatial relationships based on proximity to HPSVs and HRSVs 

In this study, a standardized 1–10 reclassification scale was employed to assess spatial health variables, where 1 represents the least healthy 
locations and 10 denotes the healthiest. As outlined in Section 5 and Table 1, this standardized approach enables the integration of diverse spatial 
determinants of urban health. The uniform scaling methodology aligns with previous studies on urban health indices, where classification scales 
are utilized to ensure comparability across heterogeneous spatial attributes (Perdue, Stone, & Gostin, 2003). This reclassification framework nor-
malizes the influence of each variable, facilitating the development of a composite Healthy Location Index (HLI) by incorporating both health-
promoting spatial variables (HPSVs) and health-restraining spatial variables (HRSVs). The mapped results, presented in Figures 5 and 6, depict the 
spatial distribution of health-related factors influencing urban well-being. Figure 5 illustrates the reclassified HPSVs, applying a “Greater is Better” 
approach for NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index), while employing a “Lower is Better” 
approach for the Euclidean distance-based distribution of green and blue spaces. These methodological choices align with proximity-based health 
modeling, which demonstrates the positive health impacts of increased access to vegetation and water bodies, contributing to psychological well-
being, improved air quality, and urban cooling (Roy et al., 2022). Conversely, Figure 6 presents the spatial distribution of HRSVs, including alcohol 
outlets, waterlogged areas, and regions with poor air quality. A "Greater is Better" approach was applied, where locations farther from these 
variables received higher scores. Proximity to alcohol outlets, waterlogged zones, and poor AQI areas is associated with adverse health outcomes, 
such as increased crime rates, vector-borne diseases, and respiratory conditions (Haque & Singh, 2017). The classification of these variables high-
lights the role of environmental stressors in shaping urban health risks.  

 

 

Figure 4. Health Restraining Spatial Variables (HRSVs) and their distribution 

The spatial analysis underscores significant heterogeneity in the distribution of health-promoting and health-restraining factors across Kol-
kata. Healthier areas are characterized by proximity to green and blue spaces, while regions with high built-up density, poor air quality, and acces-
sibility to alcohol outlets exhibit lower health scores. These findings reinforce the need for urban planning interventions that enhance access to 
green infrastructure and mitigate environmental health risks. Prior research emphasizes that strategic urban planning and policy interventions—
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such as improving urban green space accessibility and reducing exposure to environmental hazards—are critical to fostering healthier urban en-
vironments (Sen & Guchhait, 2021; Roy et al., 2022; Spiroska, Rahman & Pal, 2011; Rai, 2019; Sarkar, Webster & Gallacher, 2018; Gason et al., 
2017). 

4.3 Healthy Location Index (HLI) for Kolkata 

The primary objective of this study is to develop a Healthy Location Index (HLI) for Kolkata using the Analytic Hierarchy Process (AHP) model, 
a multi-criteria decision-making approach that allows for the systematic evaluation of various health-related spatial variables. In this framework, 
health indicators are classified into two major categories: Health Promoting Spatial Variables (HPSVs) and Health Restraining Spatial Variables 
(HRSVs). The HPSVs, such as the NDVI, NDWI, proximity to open spaces, and blue spaces (e.g., lakes and ponds), are reclassified based on an index 
scale ranging from 1 to 10, where higher values indicate healthier locations. Similarly, the HRSVs, including proximity to alcohol outlets, water-
logged areas, and air quality (measured through the Air Quality Index, AQI), are also reclassified on the same scale. In this case, lower index values 
correspond to less healthy areas, while higher values denote healthier locations. 

The AHP model facilitated a detailed pairwise comparison of these variables, allowing for the assignment of priority weights to each indicator 
based on its relative importance in determining the healthiness of a location. The study’s priority matrix, outlined in Table 3, provides a detailed 
ranking of various spatial variables that contribute to the development of the Healthy Location Index (HLI) for Kolkata. This ranking was derived 
using the Analytic Hierarchy Process (AHP) model, which allowed for the systematic evaluation of both HPSVs and HRSVs factors.  

 

 

Figure 5. Reclassified map of key Health-Promoting Spatial Variables (HPSVs) for the Healthy Location Index (HLI) using a 1–10 scale, where higher 
values indicate stronger contributions to urban health. NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water 
Index) follow a "Greater is Better" approach, with higher scores assigned to areas with greater vegetation and water presence. Euclidean Distance 
from Ponds & Lakes and Parks & Open Spaces follow a "Lower is Better" approach, with higher scores assigned to areas closer to these features, 
reinforcing their positive impact on HLI. 
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The spatial variables were assigned priority percentages based on their relative importance in determining the healthiness of different loca-
tions across the city (Table 3). These priorities reflect the weight each factor has in contributing to either positive or negative health outcomes, 
aligning with recent urban health research (Lowe, Boulange, & Giles-Corti, 2014).  

Table 3. Result of Priority Matrix 

Spatial Variables Priority (%) Rank 

Near Higher NDVI value 6.8 6 

Near Higher NDWI value 8.5 5 

Near Open Space/ Recreational Park 6.1 7 

Near Blue Space/Pond/ Lake 11.3 4 

Away from higher NDBI 3.9 8 

Away from Waterlogged Zone 12.8 3 

Away from fast food and Alcohol Outlets 21.1 2 

Away from Higher AQI 29.4 1 

 
The highest-ranked spatial variable, distance from areas with higher Air Quality Index (AQI), received a weight of 29.4%, indicating that air 

quality is the most critical factor in determining a healthy location in Kolkata. This finding is consistent with numerous studies showing the signifi-
cant impact of air pollution on respiratory and cardiovascular diseases, especially in dense urban areas like Kolkata (Haque and Singh, 2014; 
Manisalidis et. al., 2020). Given that Kolkata ranks among the most polluted cities in India, poor air quality remains a substantial public health 
concern, particularly in areas with dense vehicular traffic and industrial activity (Lowe, Boulange, & Giles-Corti, 2014). The second most critical 
factor is proximity to alcohol outlets, which is associated with a 21.1% priority. This aligns with existing research suggesting that areas with a higher 
concentration of fast food and alcohol outlets tend to exhibit poorer health outcomes, due to the increased prevalence of lifestyle-related diseases 
such as obesity, liver disease, alcohol dependency, and violence-related injuries (Ganasegeran, et.al. 2024).  

The high weight of this factor underscores the importance of regulating alcohol availability in urban areas to improve public health outcomes. 
Proximity to waterlogged zones was ranked third, with a weight of 12.8%. This is significant in the context of Kolkata’s vulnerability to monsoon 
flooding, which exacerbates the spread of waterborne diseases like cholera and dengue fever, posing serious health risks in certain parts of the 
city (Mukhopadhyay et. al. 2019). Waterlogged zones in Kolkata frequently suffer from stagnant water and poor drainage systems, leading to an 
increased prevalence of these diseases, particularly in low-income neighborhoods where infrastructure may be lacking. Proximity to blue spaces 
(ponds/lakes) was assigned a weight of 11.3%, reflecting the positive health impact of access to natural water bodies, which are known to promote 
mental well-being, reduce stress, and encourage physical activity (Ganasegeran, et.al. 2024). Blue spaces, such as the East Kolkata Wetlands, play 
a crucial role in enhancing the environmental and aesthetic quality of urban areas, contributing to overall health improvements. In contrast, 
proximity to open spaces and recreational parks received a lower priority, with a weight of 6.1%. Although green spaces are known to have a 
positive impact on physical and mental health, the relatively low availability and uneven distribution of such spaces in Kolkata likely reduce their 
overall influence on public health outcomes (Sarkar, Webster, & Gallacher, 2018). Despite this, open spaces remain important for promoting 
outdoor activities and mitigating the urban heat island effect, especially in the context of climate change (Sen & Guchhait, 2021). The Normalized 
Difference Vegetation Index (NDVI), which measures vegetation density, was weighted at 6.8%, ranking sixth. While NDVI is indicative of green 
coverage, its lower weight compared to AQI and alcohol outlets suggests that, although important, vegetation cover in Kolkata does not have as 
immediate or significant an impact on health as other factors. This is likely due to the limited availability of high-quality green spaces in core urban 
areas, where the negative effects of pollution and urban density outweigh the benefits of green cover. Conversely, proximity to areas with high 
Normalized Difference Built-up Index (NDBI)—an indicator of built-up, urbanized areas—was assigned the lowest priority, with a weight of 3.9%. 
This finding suggests that while urban density contributes to health concerns, its impact is less direct compared to other spatial variables such as 
air quality and access to open spaces. The moderate weight assigned to NDBI may also reflect the fact that, despite high levels of urbanization, 
Kolkata’s compact urban form and relatively high use of public transport can mitigate some of the negative health impacts associated with urban 
sprawl (Lowe, Boulange, & Giles-Corti, 2014).  

The priority matrix highlights a clear distinction between the health-promoting and health-restraining factors in Kolkata. Notably, air quality, 
proximity to alcohol outlets, and waterlogged areas emerge as the most critical health-restraining variables, reflecting their profound and imme-
diate impact on public health. These findings are consistent with the literature on urban health risks, where air pollution, lifestyle factors, and 
environmental hazards are commonly cited as major contributors to health inequities in cities (Maji, Dikshit, & Deshpande, 2017). In contrast, 
access to blue spaces, open spaces, and vegetation are health-promoting variables, though their relative influence is less pronounced in the con-
text of Kolkata’s urban environment. This suggests that while the presence of natural spaces contributes positively to health, their distribution and 
availability are insufficient to offset the negative impacts of pollution and urban density in many parts of the city. The analysis yielded a Consistency 
Ratio (CR) of 8.4%, well within the acceptable threshold of 10%. The CR is a key measure in AHP to ensure the reliability of the pairwise compari-
sons; a CR above 10% would render the results unreliable (Saaty, & Kearns, 1985). In this study, the consistency of the judgments underscores the 
robustness of the final HLI outcomes. 

After performing the reclassification and pairwise comparison, the HLI was developed by integrating the weighted values of each health-
promoting and health-restraining variable. The Healthy Location Index (HLI), displayed in Figure 7, reveals significant spatial heterogeneity in the 
healthiness of different parts of Kolkata. As highlighted before on a scale of 1-10, lower index values correspond to less healthy areas, while higher 
values denote healthier locations. Most areas within the city fall under an index value of 5, indicating a moderate level of health, where locations 
are neither strongly health-promoting nor severely health-restraining. This aligns with other urban studies highlighting the challenges of balancing 
urban development with health sustainability, especially in dense megacities (Harpham and Werna, 1996). Key areas, such as Esplanade, Park 
Street, Topsia and Badartala, fall under the lower end of the index, suggesting these are health-restraining locations. These areas are characterized 
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by higher levels of urbanization, poor air quality, and proximity to health-restraining variables like alcohol outlets and waterlogged areas, contrib-
uting to a less favorable living environment. Studies from similar urban contexts highlight the cumulative negative effects of built density and 
limited access to green spaces, which exacerbate public health risks (Sarkar, Webster, & Gallacher, 2018). In contrast, areas like Cossipore, Anan-
dapur part of south-west Kolkata show relatively higher index values, between 6 and 8, indicating health-promoting locations. These areas benefit 
from proximity to green and blue spaces and lower concentrations of built-up areas, which enhance their overall health quality. Similar findings 
have been reported in other urban studies, where access to green and open spaces significantly correlates with better public health outcomes, 
especially in reducing stress and promoting physical activity risks (Sarkar, Webster, & Gallacher, 2018). 

 

 

Figure 6. Reclassified Health-Restricting Spatial Variables (HRSVs) Map – Demonstrating Inverse HLI Contributions Based on Proximity: Greater 
distances from HRSVs (e.g., high-density built-up areas, alcohol outlets, zones of poor air quality) contribute positively to HLI 

5. Validation of HLIs using Post Lockdown containment zones of 2020 - 2021 

To validate the HLI's performance, we used containment zones designated by the West Bengal State Government as a precautionary meas-
ure during the COVID-19 lockdown from June 2020 to January 2021. Containment zones, as defined by public health and government agencies, 
are geographically demarcated areas established to curb the spread of infectious diseases, like COVID-19, through localized restrictions and en-
hanced surveillance. Within these zones, strict control measures are implemented, such as movement restrictions, compulsory testing, and isola-
tion protocols, designed to prevent community transmission from identified hotspots to surrounding areas. These zones are typically designated 
based on criteria such as population density, number of confirmed cases, and environmental factors contributing to higher transmission risks 
(Routh, Rai, & Bhunia, 2023). In the context of this study, containment zones marked by the West Bengal State Government from June 2020 to 
January 2021 were used to validate the Healthy Location Index (HLI) developed for Kolkata. The hypothesis assumes that "healthy" areas, as 
indicated by higher HLI scores, would be less likely to be designated as containment zones due to favorable environmental and spatial conditions 
that potentially lower disease transmission risks. By comparing containment zone locations with HLI rankings (Figure 8), this study employs con-
tainment zones as a real-world indicator of urban health risk, corroborating the index’s accuracy in delineating health-promoting versus health-
restraining urban areas (Lak, Shakouri Asl, Maher, 2020; Clark et.al. 2024).  

To assess the reliability of the HLI in predicting healthiness, a Receiver Operating Characteristic (ROC) curve was employed (Figure 9). The 
ROC curve, a diagnostic tool commonly used in epidemiology and geospatial health studies, measures the classifier's performance by plotting 
sensitivity 
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Figure 7. Healthy Location Index Map of Kolkata 

 

Figure 8. Overlay map of 2020-2021 containment zones on the Healthy Location Index (HLI) map of Kolkata, with 200-meter buffers around ran-
domly generated points to identify co-occurrences between containment zones and health restraining zones. 
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sensitivity (true positive rate) against specificity (1 - false positive rate). In this case, the ROC curve evaluates how effectively the HLI values corre-
late with the likelihood of an area being marked as a containment zone. An Area Under the Curve (AUC) close to 1 would signify a strong predictive 
capacity, confirming the HLI's relevance for assessing spatial health risks within urban environments (Mas. Et. al. 2013; Nath et.al. 2021). The 
assumption underlying this validation is that locations classified as "healthy" by the HLI would have a lower likelihood of being marked as contain-
ment zones, as the spatial factors associated with health-promoting areas—such as higher greenery, better air quality, and reduced urban den-
sity—are likely to limit viral transmission and improve resilience to outbreaks (Lak, Shakouri Asl, Maher, 2020). The ROC (Receiver Operating 
Characteristic) curve for the Healthy Location Index (HLI) serves to assess its classification accuracy in predicting containment and non-contain-
ment zones within Kolkata (Figure 9). By plotting “1 - Specificity” along the x-axis against “Sensitivity” on the y-axis, the ROC curve illustrates the 
model's performance, with points above the diagonal indicating accuracy better than random chance and points below indicating worse perfor-
mance (Clark et. al. 2024). The “Positive if Greater Than or Equal to” values are considered as cut-offs. For any location if the cut off values is less 
than 6.50 the “Sensitivity” and “1-Specificity” percentage is considered as Unhealthy and get drafted as Containment Zone. Any Location which is 
greater than 6.50 is considered as Healthy and will not get drafted as containment zones (A1 and A2). The cut-off was derived using the Youden’s 
Index (J = Sensitivity + Specificity - 1), which is a widely accepted method in ROC analysis for selecting the optimal threshold that maximizes both 
true positive rate (sensitivity) and true negative rate (specificity). This ensures that the classification of healthy and unhealthy zones achieves the 
best possible balance between false positives and false negatives. The asymptotic significance level of .000 (p < 0.001) confirms the robustness of 
the cut-off selection, indicating a meaningful differentiation between the two categories. In this study, the ROC curve shows a positive classifica-
tion, represented by a blue line above the diagonal, affirming that the HLI’s distinction between health-promoting and health-restraining zones is 
meaningful (Figure 9). The Area Under the Curve (AUC) is statistically significant with an asymptotic significance level of .000, demonstrating a 
strong association between the containment status and HLI values (Table A1). 
 

 

Figure 9. ROC validation curve 

An AUC of 0.66 in this context indicates that 66% of the instances of containment and non-containment zones correspond directly to the 
HLI scores, supporting the hypothesis that higher HLI scores align with healthier, non-containment areas and lower HLI scores align with areas 
more likely to be containment zones (Table 5). Although, the ROC analysis with AUC of 0.66 suggests that the Healthy Location Index (HLI) has 
moderate predictive ability in distinguishing between healthy and unhealthy zones, this value is statistically significant, it indicates that 66% of 
instances of containment and non-containment zones align with HLI scores, which is above random chance (AUC = 0.5) but below the threshold 
considered strong predictive performance (AUC ≥ 0.8). These findings highlight the utility of the HLI as a geospatial health metric in identifying and 
assessing spatial health risks across urban zones. 

6. Conclusions 

The Healthy Location Index (HLI) developed in this study establishes a rigorous geospatial framework for assessing health heterogeneity 
across urban landscapes, considering both health-promoting and health-restraining spatial variables. The methodology leverages the Analytic 
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Hierarchy Process (AHP) for assigning weighted importance to each variable and utilizes Euclidean distance to model spatial relationships effec-
tively, providing a refined analysis of localized health conditions. This approach enabled an in-depth view of health vulnerability at a granular level, 
as validated by ROC curve analysis using COVID-19 containment zones—a strategy representing recent urban health risk—thereby underscoring 
the HLI's validity in capturing spatial health disparities (Nath et.al. 2021). Results demonstrated significant spatial variation within Kolkata, with 
areas like Cossipore, Patuli, Santoshpur, Parnashree, Tahkurpukur, Nabapally, Sarsuna etc. emerging as more health-promoting, due in large part 
to their proximity to natural elements such as green and blue spaces. In contrast, areas with high levels of urbanization and poor air quality, 
including Esplanade, Topsia, Tollygung, Baowbazar, Sealdah, Entali, Mullickbazar etc., were highlighted as health-restraining zones. These insights 
underscore the potential of HLI as a tool for directing targeted public health measures, urban planning policies, and sustainable development 
efforts that aim to reduce health inequalities and enhance urban liveability.  

In the academic sphere, this study contributes significantly by advancing the methodology for health index modeling in urban settings, 
validated by empirical health data, and setting a standard for combining geospatial analytics with health metrics in urban studies (Ozdenerol, 
2016). However, limitations arise from the reliance on static spatial data, which does not fully capture temporal health variations or account for 
the dynamic nature of urban environments and emerging health trends. Additional limitations include potential bias from the subjective weights 
assigned in the AHP process, as well as challenges in accessing high-resolution data on health-restraining features such as real-time air quality or 
socio-economic deprivation indices (Lowe, Boulange, Giles-Corti, 2014). The moderate predictive ability of an AUC of 0.66 implies that while HLI 
provides valuable insights into spatial health risks, it should be used in conjunction with other health indicators rather than as a standalone metric. 
Additional inclusion of spatial, demographic, and epidemiological factors, such as population density, socioeconomic status, healthcare accessibil-
ity, and acute disease incidence rates may further enhance predictive accuracy.  While HLI is informative in identifying areas at risk, targeted 
interventions should be validated with field data. Containment strategies, or resource allocation for disease prevention or air pollution control, 
can be prioritized in areas with lower HLI scores. However, decision-makers must also consider potential biases in geospatial data, the role of 
unmeasured confounding variables (socio-economic factors, demographic, behavioural and life style factors, policy and governance factors etc.) 
and the need for adaptive modeling based on real-time health outcomes (Kirkbride et al., 2024). Research should focus on enhancing the temporal 
sensitivity of the HLI by integrating time-series geospatial datasets, possibly utilizing real-time satellite data or IoT sensor networks to capture 
dynamic health variables like air quality, noise levels, or even crowd density. Incorporating machine learning algorithms could further refine the 
weighting process and increase objectivity. Expanding HLI validation by comparing it with health outcomes from longitudinal data could also 
strengthen its reliability and applicability across various urban environments. This would help develop a more resilient model that can better 
inform urban health policies and allow adaptation to rapidly changing urban health landscapes. 
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Appendix  

Table A1. Result of ROC validation 

(a) Case Processing Summary 

Containment Valid N (listwise) 

Positivea 169 

Negative 93 

Larger values of the test result variable(s) indicate stronger evidence for a positive actual state. 
a. The positive actual state is 0. 

(b) Area Under the Curve (AUC) 

Test Result Variable(s):   HLI   

Area Std. Errora Asymptotic Sig.b Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

.660 .034 .000 .593 .727 

The test result variable(s): HLI has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 
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Table A.2 Coordinates of the Curve 

Positive if Greater Than 

or Equal To 

Sensitivity 1 - Specificity Sensitivity 1 - Specificity 

2.00 1.000 1.000 100.00% 100.00% 

3.50 .994 1.000 99.41% 100.00% 

4.50 .911 .828 91.12% 82.80% 

5.50 .527 .237 52.66% 23.66% 

6.50 .095 .011 9.47% 1.08% 

7.50 .006 0.000 0.59% 0.00% 

9.00 0.000 0.000 0.00% 0.00% 

Note: The “Positive if Greater Than or Equal to” values are considered as cut-offs. For any location if the cut off values is less than 6.50 the “Sensitivity” and “1-
Specificity” percentage is considered as Unhealthy and get drafted as Containment Zone. Any Location which is greater than 6.50 is considered as Healthy and will 
not get drafted as containment zones. The cut-off was derived using the Youden’s Index (J = Sensitivity + Specificity - 1), which is a widely accepted method in ROC 
analysis for selecting the optimal threshold that maximizes both true positive rate (sensitivity) and true negative rate (specificity). This ensures that the classification 
of healthy and unhealthy zones achieves the best possible balance between false positives and false negatives. The asymptotic significance level of .000 (p < 0.001) 
confirms the robustness of the cut-off selection, indicating a meaningful differentiation between the two categories. 
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